
Intro to LSM & B-Trees
for Devs & DevOps

\\\\\\\\\

Heap (Un-Ordered) LSM (Ordered)

DB Storage Engine (DevOps)

Who am I?

Dave Pitts - Database Engineer - Adyen (Madrid)

\\\\\\\\\

Work From Home Office

A typical week at Adyen?

human connection (CSR) chill/focus time

\\\\\\\\\

Traditional DB Storage (Devs)
Data Page (aka Heap) - UNORDERED B-tree Pages - ORDERED

Data
Pages

B-Tree

Primary Key

Field 1

Field 2

Field 3
…

Row Structure:

(Key, DataPage Pointer)

Leaf Structure (array)

PK (OLTP) Secondary Indexes (RI & OLAP)

8Kb - variable row counts 8Kb - 100s of children (PK)

I love 💚 pgbench

* Simple to use and highly adaptable bench marking tool

* --foreign-keys for FK constraints between tables

* scale factor 1, 2, 4, 8 …
-s 1 of 1 i.e. 100,000 accounts
-s 2 of 2 i.e. 200,000 accounts
-s 4 of 4 i.e. 400,000 accounts
-s 8 of 8 i.e. 800,000 accounts

FKs & Secondary Index?

Data
Pages

Primary Key

Field 1

Field 2

Field 3
…

Row Structure:

(Key, DataPage Pointer)

Unindexed foreign keys
https://wiki.postgresql.org/wiki/Unindexed_foreign_keys

https://wiki.postgresql.org/wiki/Unindexed_foreign_keys

pgbench - sf1

Data
Pages

B-Tree

Primary Key

Field 1

Field 2

Field 3
…

Row Structure:

(Key, DataPage Pointer)

Leaf Structure (array)

PK Secondary Indexes

 Regular binary tree
Example 1

\\\\\\\\\

Example 2

1970s balance tree fan-out (flat)
Binary-search tree

\\\\\\\\\

Balanced Tree (f = fanout)

log2(n) vs logf(n)
f = 4 or 200?

self-balancing algorithms 💪

What The Fanout?

Imagine a tree whose canopy is the world itself! (F=200?)

How Deep Is My Balanced Tree?

Now some really fun maths (optional) with logs to base 200 (i.e. F=200)

Postgres Example

Real-world application: One billion rows, just four levels of depth!

Powerful maths and B+ trees
Log base 200 - “very flat”

WHERE id BETWEEN 100 AND 200

B+Tree (linked list)

“where pk between 1 and 7” (ASC/DESC)

Btree Reads-per-Select

Scale Factor 4 (400,000 rows) has 4 Read (3 Index Pages & 1 Data Page)

bench_ff100_sf4=# explain (analyze,buffers) select * from pgbench_accounts where aid = 32928;
 QUERY PLAN

 Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.42..8.44 rows=1 width=97) (actual time=0.527..0.528 rows=1 loops=1)
 Index Cond: (aid = 32928)
 Buffers: shared read=4
 Planning:
 Buffers: shared hit=62 read=8 dirtied=1
 Planning Time: 17.107 ms
 Execution Time: 0.573 ms
(7 rows)

Btree Reads-per-Select

Scale Factor 8 (800,000 rows) has 4 Read (still 3 Index Pages & 1 Data Page)

bench_ff100_sf8=# explain (analyze,buffers) select * from pgbench_accounts where aid = 32928;
 QUERY PLAN

 Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.42..8.44 rows=1 width=97) (actual time=0.709..0.711 rows=1 loops=1)
 Index Cond: (aid = 32928)
 Buffers: shared read=4
 Planning:
 Buffers: shared hit=62 read=8 dirtied=3
 Planning Time: 10.082 ms
 Execution Time: 0.978 ms
(7 rows)

bench_ff100_sf16, bench_ff100_sf32, bench_ff100_sf64 ….

Btree Reads-per-Select

Keep on doubling (3 Index Pages & 1 Data Page)

Btree Reads-per-Select

Scale Factor 512 (5.12 million rows) has 5 Read (4 Index Pages & 1 Data Page)

bench_ff100_sf512=# explain (analyze,buffers) select * from pgbench_accounts where aid = 32928;
 QUERY PLAN

 Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.56..8.58 rows=1 width=97) (actual time=0.080..0.083 rows=1 loops=1)
 Index Cond: (aid = 32928)
 Buffers: shared hit=5
 Planning Time: 0.256 ms
 Execution Time: 0.212 ms
(5 rows)

Very efficient read structures
Size vs Lookups

Index size exp growth

Cost flat

\\\\\\\\\

Heap (Un-Ordered) LSM (Ordered)

DB Storage Engine (DevOps)

“Accountants don’t use erasers or they end up in jail”

Immutable Log Structures

"A very fine line between indexes and tables”
"b-trees are heavily read optimized … lsm-trees are heavily write optimized"

 - SE Radio 417: Alex Petrov: Distributed Databases

Database Internals

\\\\\\\\\

Paged (aka Heap) LSM Based (key-value)

Data
Pages

Data Pages + PK ≃ LSM

Primary
Key

\\\\\\\\\

RAFT (ligher/tighter real time consistency)

Replication Models?
Paged (aka Heap) Log Based (Quorum)

DC1 DC2 DC3

DC1
(Primary)

DC2
(Replica)

DC3
(Replica)

Symmetric Cluster

Non-Symmetric Cluster
(log shipping &

“sync rep pain matrix” ?)

* Probabilistic (set-membership) data structure … 1-2% false positives ?
* Based on multiple hash functions - feed into a compact bit array.
* Good for YES/NO question? My data is not in this file, but maybe it is in this files
* Read Amplification?
* Hashing does not support Range Scans, only atomic look ups!?

Reads & Bloom Filters

Non-Symmetric Cluster
(log shipping)

\\\\\\\\\

Visualizing LSM trees
Pyramid Build Blocks SSD table - triangulate

upto 5 or 6 levels and x10 growth?

“Postgres Compatible”
(last few 5-10 years)

pgrocks
(fdw)

Google
Chrome

(Embedded
2011)

RocksDB
Facebook

(2013 MySQL)

Implementations - old & new
Paged/Heap (old world) LSM (new world)

1980s

Facebook

(2008)

Google
BigTable

(2006)

Stream broker 2015

1970s

1990s

Amazon
Dynamo

(2007)

NoSQL

Flink LSM-tree synergy?

Kukushkin & PG Community Pain

PostgreSQL High Availability Poker

Custom DB Topologies

* Community PG Standalone - bread & butter

* Community PG Async Replicas - bread & butter

* Community PG Sync Replicas - bread & butter

* “PG Compatible” Highly distributed (LSM)
 - great for uptime (but use sparingly?)

Docker and pgbench scripts to test LSM trees on your (home/personal) laptop
https://github.com/dgapitts/pgday-paris-btree-lsm-demo

pgbench against LSM trees?

pgrocks
(fdw)

https://github.com/dgapitts/pgday-paris-btree-lsm-demo

Long TXNs and TPS - pgrocks (fdw)

Drop Column - pgrocks (fdw)

Truncate Table - pgrocks (fdw)

bench1=# explain (analyze,buffers) select filler from big_table where id = 80000;
explain (analyze,buffers) select filler from big_table where id = 80000;
 QUERY PLAN
——
 Index Scan using big_table_id on big_table (cost=0.00..2099.12 rows=17103 width=218)
 (actual time=8.996..9.050 rows=4 loops=1)
 Index Cond: (id = 80000)
 Planning Time: 7.983 ms
 Execution Time: 10.065 ms
 Peak Memory Usage: 8 kB
(5 rows)

Actual 4 vs Expected 17,103?

pgscorecard.com ?

Are LSM trees a niche use case?

http://pgscorecard.com

Challenges

* Monitoring - this is really hard!!

* Compaction vs Vacuum (think ora-1555)

* Read amplification (mitigated by bloom filters)

* OLTP write heavy ✅ but may not OLTP update/read❓
and not classic OLAP/HTAP ❌ (no index range scans?)

Further Tests

* Update Heavy 0%, 20%, 40%, 80%, 100% analysis

* Hot Key ranges, frequent updated / key customers

* Long Duration tests, do not just test daily jobs but
monthly and annual too!

A few links
Microsoft Posette “Myths and Truths about Synchronous Replication in PostgreSQL” Alexander
Kukushkin (hard DBA stuff)
https://www.youtube.com/watch?v=PFn9qRGzTMc

“PostgreSQL High Availability Poker” Adyen DEV training (from pgDay Lowlands)
https://www.youtube.com/watch?v=oEjj6ofjxpo

Software Engineering Radio E417 - Alex Petrov on LSMs trees (contributor to Cassandra)
https://se-radio.net/2020/07/episode-417-alex-petrov-on-database-storage-engines/

Docker and pgbench scripts to test LSM trees on your laptop
https://github.com/dgapitts/pgday-paris-btree-lsm-demo

pgDay Paris and Amsterdam Open Source Data Infra meetup
 https://www.youtube.com/watch?v=TMKKZwWYY6A

https://www.youtube.com/watch?v=PFn9qRGzTMc
https://www.youtube.com/watch?v=oEjj6ofjxpo
https://se-radio.net/2020/07/episode-417-alex-petrov-on-database-storage-engines/
https://github.com/dgapitts/pgday-paris-btree-lsm-demo
https://www.youtube.com/watch?v=TMKKZwWYY6A

Q & A

Code (WIP / scratch)JobsMe

https://github.com/dgapitts/pgday-paris-btree-lsm-demo/
https://www.linkedin.com/in/dave-pitts-533a7b5/

