Intro to LSM & B-Trees
for Devs & DevOps

DB Storage Engine (DevOps)

Heap (Un-Ordered) LSM (Ordered)

Dave Pitts - Database Engineer - Adyen (Madrid)

P L)

engineered
for ambition

A typical week at Adyen?

Work From Home Office

chill/focus time human connection (CSR)

Traditional DB Storage (Devs)

PK (OLTP) Secondary Indexes (Rl & OLAP)

Row Structure:
B AL
Field 1
Field 2
B-Tree

Field 3

Leaf Structure (array)

(Key, DataPage Pointer)

| love ¥ pgbench

* Simple to use and highly adaptable bench marking tool

* --foreign-keys for FK constraints between tables

*scalefactor1,2,4,8...

-s 1 of 11.e. 100,000 accounts
-s 2 of 2 1.e. 200,000 accounts
-s 4 of 4 1.e. 400,000 accounts
-s 8 of 8 1.e. 800,000 accounts

constraint_name

pgbench_accounts_bid_fkey
pgbench_history_aid_fkey

pgbench_history_bid_fkey

pgbench_history_tid_fkey

pgbench_tellers_bid_fkey

(5 rows)

pgbench_accounts |
pgbench_history
pgbench_history
pgbench_history
pgbench_tellers

https://wiki.postgresqgl.org/wiki/Unindexed foreign keys

CREATE
CREATE
CREATE
CREATE
CREATE

FKs & Secondary Index?

suggested_1index

INDEX ON pgbench_accounts(bid);
INDEX ON pgbench_history(Caid);
INDEX ON pgbench_history(bid);
INDEX ON pgbench_history(tid);
INDEX ON pgbench_tellers(bid);

https://wiki.postgresql.org/wiki/Unindexed_foreign_keys

gbench - sfl

stl=# \d pgbench_accounts
Table "public.pgbench_accounts”
Column ypE Collation | Nullable | Default

Lnteger null
Lnteger

abalance Lnteger

filler character(g&4)

Indexes:

Foreign-key constraints:

Referenced by:

TABLE "pgbench_history” CONSTRAINT "pgbench_history_aild_fkey FOREIGN KEY (aid) REFERENCES pgbench_accounts(aid)

Regular binary tree

Numbers: 488, 201, 750, 105, 312, 600, 890, 515, 652, 921

201
/N
1685 312 666 890
\ \
5 921
/

N\ /\
228 3060 606 3800

/
550

1970s balance tree fan-out (flat)

log2(n) vs login)
f=4 or 2007

self-balancing algorithms L

1. Fanout and Exponential Growth

e Suppose each B-tree node can branch to F children (the fanout).
At depth 1 (the root), the tree covers at most F entries.
At depth 2, it covers F x F = F? entries.
At depth 3, it covers F x F X F = F?® entries.
In general, at depth d, the tree can cover up to Fd entries.

That's exponential growth — every time you add a level, the capacity multiplies.

v 2. Logarithms and Tree Height

e |f you know the number of rows NN and fanout F you can ask:
How many levels (depth) does the tree need to hold N rows?

 Solve for d in:

Take logarithms:

d > logp(N)

e That's why lookups in a B-tree are O(log n): the tree height grows only logarithmically with the
number of rows.

» Assume:
« Fanout = 200 (typical for 8 KB pages with small keys).
 Rows indexed: 1 billion (10°).

» Tree depth needed:

d 7= 10g5(10°)
» Change base:

- log;,(10) _ ﬂ ~ 4

~ log,,(200) 2.3

d

e Just 4 levels deep!
That means even with a billion rows, a lookup requires at most 4 page reads (root — internal —
leaf — row).

Powerful maths and B+ trees

KE@

ey goos

dg dg dy

bench_ff100_sf4=# explain (analyze buffers) select * from pgbench_accounts where aid = 32928;
QUERY PLAN

Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.42..8.44 rows=1 width=97) (actual time=0.527..0.528 rows=1 loops=1)
Index Cond: (aid = 32928)
Buffers: shared read=4

Planning:
Buffers: shared hit=62 read=8 dirtied=1

Planning Time: 17.107 ms

Execution Time: 0.573 ms

(7 rows)

bench_ff100_sf8=# explain (analyze buffers) select * from pgbench_accounts where aid = 32928;
QUERY PLAN

Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.42..8.44 rows=1 width=97) (actual time=0.709..0.711 rows=1 loops=1)
Index Cond: (aid = 32928)
Buffers: shared read=4

Planning:
Buffers: shared hit=62 read=8 dirtied=3

Planning Time: 10.082 ms

Execution Time: 0.978 ms

(7 rows)

bench_ff100_sf16, bench_ff100_sf32, bench_ff100_sfé64 ...

bench_ff100_sf512=# explain (analyze buffers) select * from pgbench_accounts where aid = 32928;
QUERY PLAN

Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.56..8.58 rows=1 width=97) (actual time=0.080..0.083 rows=1 loops=1)
Index Cond: (aid = 32928)
Buffers: shared hit=5

Planning Time: 0.256 ms

Execution Time: 0.212 ms

(5 rows)

Very efficient read structures

Index size vs Simple Lookup Cost

o— Index-size
simple-lockup-cost

Index size exp growth

DB Storage Engine (DevOps)

Heap (Un-Ordered) LSM (Ordered)

Immutable Log Structures

O'REILLY"

Database
Internals

A Deep-Dive into How Distributed Data
Systems Work

AAA,BBB,CCC
AAA,BBB

AAA,DDD
AAA,2,01/01/2015
3,Z272,5623

Alex Petrov

Database Internals

"A very between indexes and tables”
" are heavily read optimized ... are heavily write optimized"

OREILLY' - SE Radio 417/: Alex Petrov: Distributed Databases
Database

Internals

A Deep-Dive into How Distributed Data
Systems Work

Alex Petrov

Data Pages + PK = LSM

Primary
Key

Replication Models?

QIITT TN (OTIT T T . [LIIT T T .
[T T T . [T T [T 7 . Level 0

NN N

(L[T W [TIT0 [T DII]:I:I:- Level 1

sotd

NS

[ITTITT TTT T T 7 —— Level 2

DC1 DC3 sorted ~

(Primary) (Replica) Compaction continues creating fewer, larger and larger files

Symmetrlc Cluster

Replica D: D
Non-Synimetri)c Cluster D:@D ng) BD Z,N I:I

(log shipping & DC3

“sync rep pain matrix” ?) RAFT (ligher/tighter real time consistency)

Reads & Bloom Filters

Probabillistic (set-membership) data structure ... 1-2% false positives 7

Based on multiple hash functions - feed into a compact bit array.

Good for YES/NO question? My data 1s not in this file, but maybe it s in this files
Read Amplification?

Hashing does not support Range Scans, only atomic look ups!?

Visualizing LSM trees

QIITT TN (T T T (LIIT T T T
ITIT T T . [T T 7T e [T 7T 7 .

NOONY N

sorted — sorted = sorted =

NN/

[T TT T T T 7 —— Level 2

sorfted ~

Compaction continues creating fewer, larger and larger files

Implementations - old & new

“Postgres Compatible”
(last few 5-10 years)

Postgre SQL

E’.’?/\ “. Facebook
/ RocksDB | (2008)

cassandra

SQL Server Facebook

(2013 MySQL) Amazon
. Dynamo
a‘ T Google (2007)
5)| Chrome | Google
ORACLE W (Embedded | BigTable
levelps 201 (2006)
NoSQL

Flink LSM-tree synergy?

Flink's state access pattern is append + point lookup dominated:

Operation type Frequency Pattern
INSERT / PUT Very frequent New keys (e.g., new user/session/window).
UPDATE Frequent but small Overwrites of existing keys (e.g., count += 1). LSM handles this by

appending a new version — not in-place modification.

DELETE Moderate Expiring state, old windows — handled via tombstones and

compaction.

READ Moderate Random point lookups (e.g., lookup current counter).

Kukushkin & PG Community Pain

e&'cd : j&@ DTeVEN -',f

'

PostgreSQL High Availability Poker

Asynchronous Replica
(One Primary, Replicas+)

Custom DB Topologies

* Community PG Standalone - bread & butter
*Community PG Async Replicas - bread & butter

*Community PG Sync Replicas - bread & butter

“ PG Compatible” Highly distributed (LSM)
- great for uptime (but use sparingly?)

pgbench against LSM trees?

Gj ¢i2) YugaByte pgrocks

(fdw)

Docker and pgbench scripts to test LSM trees on your (home/personal) laptop

https://github.com/dgapitts/pgday-paris-btree-lsm-demo

Long TXNs and TPS - pgrocks (fdw)

2500
2000
2 1500
1000
) |
: |I|I||||||||u|”||”|”|||”HI|””HH”NHH||m|”””||||||”m|||

Drop Column - pgrocks (fdw)

Truncate Table - pgrocks (fdw)

@

Actual 4 vs Expected 17,1037

benchl=# analyze big_table;

analyze big_table;

WARNING: ‘'analyze' is a beta feature!
LINE 1: analyze big_table;

A

HINT: Set 'ysql_beta_features' ybd-tserver gflag to true to suppress the warning for all beta features.

ANALYZE
Time: 5743.785 ms (00:05.744)

benchl=# explain (analyze,buffers) select filler from big table where id = 80000;

explain (analyze,buffers) select filler from big table where id = 80000;
QUERY PLAN

Index Scan using bilg table i1d on big table (cost=0.00..2099.12 rows=17103 width=218)
(actual time=8.996..9.050 rows=4 loops=1)
Index Cond: (1d = 80000)
Planning Time: 7.983 ms
Execution Time: 10.065 ms
Peak Memory Usage: 8 kB
(5 rows)

scorecard.com “

Are LSM trees a niche use case?

http://pgscorecard.com

Challenges

* Monitoring - this is really hard!!
* Compaction vs Vacuum (think ora-1555)
“ Read amplification (mitigated by bloom filters)

* OLTP write heavy ¥ but may not OLTP update/read
and not classic OLAP/HTAP X (no index range scans?)

Further Tests

* Update Heavy 0%, 20%, 40%, 80%, 100% analysis
* Hot Key ranges, frequent updated / key customers

* Long Duration tests, do not just test daily jobs but
monthly and annual too!

A few links

Microsoft Posette “Myths and Truths about Synchronous Replication in PostgreSQL’ Alexander
Kukushkin (hard DBA stuff)

https://www.youtube.com/watch?v=PFn9gRGzTMc

“PostgreSQL High Availability Poker” Adyen DEV training (from pgDay Lowlands)
https://www.youtube.com/watch?v=0oEji6ofixpo

Software Engineering Radio E417 - Alex Petrov on LSMs trees (contributor to Cassandra)
https://se-radio.net/2020/07/episode-417-alex-petrov-on-database-storage-engines/

Docker and pgbench scripts to test LSM trees on your laptop
https://aithub.com/dgapitts/pgday-paris-btree-lsm-demo

pgDay Paris and Amsterdam Open Source Data Inframeetup
https://www.youtube.com/watch?v=TMKKZwWYYG6A

https://www.youtube.com/watch?v=PFn9qRGzTMc
https://www.youtube.com/watch?v=oEjj6ofjxpo
https://se-radio.net/2020/07/episode-417-alex-petrov-on-database-storage-engines/
https://github.com/dgapitts/pgday-paris-btree-lsm-demo
https://www.youtube.com/watch?v=TMKKZwWYY6A

https://github.com/dgapitts/pgday-paris-btree-lsm-demo/
https://www.linkedin.com/in/dave-pitts-533a7b5/

